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Differences between topological and geometrical distance matrices are examined. 
Some examples of geometrical distances when graphs are embedded in spaces of different 
dimensions are given. Relations of topological distance matrices to other graph matrices 
axe shown. The topological distance matrices are defined in the Hilbert space and their 
elements are distances through the graph lattices. 

1. Introduction 

Recently, Trinajsti6 and coworkers [1 -5 ]  studied properties of  geometrical 
distance matrices of  chemical molecules. They have calculated the geometrical 
equivalent of  the Wiener index and found that it correlates even better with some 
physical properties of  alkanes than the topological Wiener index. Three-dimensional 
molecular descriptors have been introduced by other authors, too [6-8] .  

Trinajsti6 and coworkers have designated the topological distance matrices 
as two-dimensional to distinguish them from new three-dimensional geometrical 
ones. Once again, a question was raised concerning the dimensionality of  graphs: 
should graphs be considered as dimensionless objects [9], one-dimensional objects 
[10], or objects in Hilbert space. 

2. Topological and geometrical distances 

The topological distance matrix D t of  the complete graph is identical to its 
adjacency matrix A. We can also interpret it as its geometrical distance matrix Dg, 
if  we suppose that n vertices of  the complete graph are on the ends of  n orthogonal 
unit vectors ej of  the ideal Euclidean space of  dimension n [11, 12]. The distances 
between aH vertices are identical with the lengths of  arcs given by the differences 
(ej - ei) of  two unit vectors. The Euclidean length is 21/2. Its squares appear in the 
distance matrices as the sums of  elements (dij + djl). 

The densest possible packing of  a graph in a space of  sufficient dimensionality 
is obtained if n vertices are on the ends of  n unit vectors ej. The vertices form the 
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plane on~ogonal to the n-dimensional diagonal unit vector I,,. (Unit vector row jT  
and column J are not applicable.) An n-dimensional plane is a body in ( n -  1)- 
dimensional space. Therefore, in three-dimensional space, four vertices can form 
the regular tetrahedron which is identical with the complete graph K4. Because the 
geometrical distances need not be changed if some arcs are missing, unless we 
postulated some forces making incomplete graphs less compact, all geometrical 
distance matrices of graphs with four vertices could be identical with the distance 
matrix of  K4. Since we know that all topological distance matrices of  these graphs 
are different, it is clear that the topological distances are not always identical with 
the geometrical distances of the densest possible configuration of graphs. 

To clarify the difference between topological and geometrical distances, the 
notion of  the phase space can be adopted. To characterize n points in k-dimensional 
space, we need n vectors determining their positions. If k > n, all n vectors can be 
orthogonal, if k = 1, all these vectors must be collinear; nevertheless, a system of  
n vectors remains always isomorphic with a system of n orthogonal vectors. Algebraic 
and combinatorial properties do not depend on the definition of unit vectors. If the 
vectors are not orthogonal and have unequal lengths, the topology of the space is 
only deformed, but its symmetry lattice remains unchanged. This principle is basic 
for all applications of graph theory: any drawing of a graph is isomorphic with its 
canonical form and thus with its ideal form. 

A graph has rn arcs or edges characterizing m binary relations from (~) 
possible relations between n vertices. It is thus an ran-dimensional vector even if 
each vertex is characterized by just one parameter. 

If we consider a linear chain in the form of a straight rod, then its geometrical 
distance matrix will be identical up to a scale factor with its topological distance 
matrix in all dimensions. However, if the chain forms a path along edges of  the n- 
dimensional simplex, then its geometrical distance matrix will be identical to the 
topological distance matrix of the complete graph. 

As an example demonstrating that the topological distance matrices do not 
correspond to two-dimensional objects, the stars Sn, each with the root in the center 
of  a circle on which circumference (n - 1) leaves are spread, can be used. Because 
$3 is identical to/-.3, its topological and geometrical distance matrices can be identical. 
$4 can have equal distances between three leaves, but the ratio between geometrical 
distances are smaller than the corresponding ratio between the radius and the diameter 
of  the circle. Unequal geometrical distances appear between leaves of stars with 
more vertices. 

From given examples, it is thus clear that the topological distances are 
independent of the graph configuration. They are distances going through the graph 
lattice. They count edges or arcs connecting vertices. Such distances are also known 
as chemical distances [13]. 

Even if we draw graphs as animals on a lattice and define the distances 
between vertices of  the graph as the shortest path on the lattice, we find that such 
distances will soon be different on branched graphs from topological ones. 
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All connected graphs with more than three vertices drawn in two dimensions 
are distorted, except linear chains. We can, of course, draw them, measure distorted 
distances and construct special two-dimensional distance matrices. This approach 
is similar to the construction of distance matrices of graphs with multiple bonds 
[14, 15], heteroatoms [16] or graphs of arbitrary complexity with weighted vertices 
and edges [17]. The ideal Euclidean space is squeezed by such procedures. However, 
the difference between distances through bonds and through space remains preserved. 

3. Some properties of topological distance matrices 

The results obtained with topological and geometrical Wiener indices are 
related to distances measured through the lattice and through the space, respectively. 
However, the topological distance matrices are connected with other graph matrices 
and these relations have profound consequences on our understanding of phase 
space properties [18]: 

(A) The topological distance matrices of trees and simple cycles can be 
transformed to the topological distance matrices of corresponding line bond 
graphs [ 19, 20] 

SDtS T + GDtG T = 4DB, (1) 

where S is the incidence matrix of a tree or a simple cycle whose rows are arcs 
i j  = (ej - el)  and G is the incidence matrix of  the identical unoriented tree or cycle. 
Here, the rows are edges i j  = (e i + ej). T h e  vector representing the edge i j  is orthogonal 
to the vector of  the arc ij .  DB in (1) is the topological distance matrix of the 
corresponding line graph. S T is the transposed matrix. 

It is unlikely that bonding electrons can be localized [21], so there seem to 
be no geometrical distance matrices of the line graphs which could be compared 
with this formal equivalence of topological distances in trees and their line graphs. 
Dt and DB of cycles are identical. 

(B) The topological distance matrices of some graphs are inverses of  their 
perturbed Kirchhoff matrices sTs. The perturbation is smallest for linear chains, 

= - S  S] , Dt<L.  ½[x -' 

where the elements of the matrix X are Xll ---- Xln =Xnl = Xnn = (n - 1) -1, xi) = 0 otherwise. 
The topological distance matrix of the infinite chain is proportional to the inverse 
of  its practically unperturbed Kirchhoff matrix [22]. 

(C) The topological distance matrices of  trees are formal equivalents of  the 
inverse matrices [ssT] -~ and of  the generalized inverses E of  sTs [23,24], 

] I SDtS-1= (l/n) SES -1, SS r -1= (1/n)WTW = - (2) 
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where W is the walk matrix [18]. The elements of  a walk matrix are arcs of  a tree, 
wij = + 1, if the arc j is in the walk i and wij = 0, if the arc j is not present in the 
walk i. The signs are determined according to the orientations of arcs in walks. 

E is the Eichinger matrix defined as the sum of  inverses of  Kirchhoff sub- 
matrices, 

tl 
E = ( jsTs) -I. 

j = l  

Here, (~.sTs) is the Kirchhoff matrix with the j th  row and column deleted. In the 
case of  trees, the elements of Eichinger matrices are sums of  distances. The Eichinger 
matrices are generalized inverses. When multiplied with the corresponding Kirchhoff 
matrix, they give the Kirchhoff matrix of the complete graph K: STSE = sTst(. 

The traces of  both quadratic forms w T w  and WW T are equal to the Wiener 
index. The trace of the Eichinger matrix E of a tree is twice the Wiener index. It 
is simultaneously the sum of elements of the topological distance matrix. 

The relations between different graph matrices are not accidental, but they 
reflect hidden properties of the Hilbert space. 

4. Distances as inverse elements 

Quantum mechanics considers molecules as objects in Hilbert space, which 
elements are finite sums of infinitely many quadratic elements ~7= ix 2. According 
to the axioms of linear algebra, to each element of  a space must exist its inverse. 
There are two kinds of inverse elements: additive a + b = 0, and multiplicative. The 
problem is how to define inverse elements to zero elements, e.g. inverse matrices 
to singular ones. 

The elements of the topological distance matrices are interpreted straightforwardly 
as numbers of arcs in walks between corresponding vertices and there appears to 
be nothing in common with some quadratics. However, at trees which form the base 
of  the graph space, another insight can be reached. 

We have shown three different matrices connected with the Wiener index: Dt, 
E and WTW, which are inverses of the quadratic forms of the incidence matrix S. 
In fact, there is another quadratic form WW T in which diagonal distances dij appear 
explicitly. This diagonal can be transformed into the distance matrix Dt exactly as 
the (~) -dimensional diagonal matrix A of incidences of  arcs in a graph Ai = 1 if the 
arc i is present in the graph, and a graph Ai = 0 if the arc i is absent. 

The diagonal matrices are, according to Eichinger [25], framed by the incidence 
matrices of the complete graph SK, 

sTs = STASh. (3) 

The incidence matrix of the complete graph can be, in its turn, decomposed 
into the incidence matrix of  the linear chain SL and its walk matrix WL: SK = WLSL. 
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In the walk matrix of  the linear chain, unit elements are uninterrupted by zeroes. 
Such matrices are known as Petrie matrices. Gordon and .Wilkinson have proved 
that only Petrie matrices corresponding to trees are non-singular [16]. The walk 
matrix of the linear chain is the Petrie matrix of  the complete graph and in the 
Petrie matrix of  a tree, only ( n -  1) rows are chosen; they permute the incidence 
matrix of  the linear chain as for the star $4 rooted in v~, 

1 
1 1 
1 1 

11111 1 IL 
-1_1_1 1 1 1 1 s̀ s'' 

Similarly, if we replace the diagonal matrix A in product (3) by the diagonal 
elements of  the quadratic form WW T, we obtain the matrix (Q - D), whose diagonal 
elements Q are identical to the diagonal elements of the quadratic form w T w  and 
row or column sums of  the matrix D, and the matrix of off-diagonal elements 
- D  t. This result can be compared with the corresponding Kirchhoff matrix 
sTs = (V - A), where V is the diagonal matrix of  vertex degrees vj. 

The topological distance matrix is formally equivalent to the adjacency matrix 
A in the frame sT(.  )St .  These elements are corresponding 

aij= 1, dij= 1, 

aij = 0, dij = 2 until (n - 1) 

or dij = oo in disconnected graphs. 

The distance (n - 1) is reached only in linear chains and the infinite distance is put 
between two components of  disconnedted graphs. 

5. Discussion 

When we consider two kinds of distance matrices, topological and geometrical, 
we must ask which of  them is primary and which is consequent, even if both lead 
to similar results. We can construct three-dimensional distances directly from the 
assumed configurations of molecules as Trinajsti6 and o~ers  did [1 -5 ,  27, 28]. We 
must know bond angles and bond lengths, and there are as many geometrical 
distance matrices as there are possible configurations of  molecules. The geometrical 
distance matriX is not an invariant which can identify a molecule. 



150 M. Kunz, Topological and geometrical distance matrices 

Alternatively, we can follow techniques used in statistical mechanics of polymer 
chains and use multiple integrals in phase space. There are evaluated eigenvalues 
of  Kirchhoff matrices and their inverses (known there as Zimm and Rouse matrices, 
respectively), characterizing properties of stochastic configurations of  polymer chains 
as Gaussian molecules [10,29]. The eigenvalues of  the Rouse matrix, which sum 
is equal to the Wiener index, are interpreted as relaxation times of  molecules. This 
makes sense, because distances need time to be passed. However, from where has 
this time appeared? 

After obtaining eigenvalues in n-dimensional space, the gyration tensor in the 
three-dimensonal space is calculated [30]. This method seems to be rigorous. 
Accidentally, it is possible to obtain only k nonzero eigenvalues of quadratic form 
from a kn-dimensional matrix of positions of  n points, but both distance matrices 
are non-singular and we can interpret them only in connection with n eigenvectors. 

It is difficult to convince old believers. Since Euclid, we have lived in three- 
dimensional space. An observer is in the center of  our perspective and our abilities 
to imagine spaces of higher dimensions are undeveloped. A couple of  centuries ago, 
the three-body problem appeared. Physicists began to study the phase space as a 3n- 
dimensional space, but 3 appeared always to be more important than n, although 
n is usually much greater than 3. It is not essential how many dimensions we need 
for the description of all properties of one elementary particle, because more difficulties 
arise from the fact that we need to describe simultaneously properties and relations 
of  too many particles. 

The enigma of the dimensionality of graphs reminds one of  old philosophical 
problems suggesting that we see shadows of ideal things only. Are graphs dimensionless 
objects which are forced into a three-dimensional Procustian bed or multi- 
dimensional objects which are squeezed into it? Once again we shall ask, together 
with Gordon [10], how to apply Occam's razor to the relation of the Rieman metrics 
to the graph metrics. 

The circumstances that the Wiener index can be interpreted as the sum of  
inverse eigenvalues of  the quadratic forms of the incidence matrices of  trees [ 12, 18] 
and that both positive and inverse eigenvaiues correspond to macroscopic properties 
of  alkanes calls by its plainness for the multi-dimensionality of  graphs and their 
matrices. 
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